skip to main content


Search for: All records

Creators/Authors contains: "Wu, Tsung-Yu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A microneedle-based aptamer biosensor was developed to minimally-nvasively measure the drug levels in real time. 
    more » « less
  2. Abstract

    Lithium is a drug widely employed for the treatment of bipolar disorder owing to its high efficacy in mood management and suicide prevention. However, this efficacy is often undermined by misdosing and nonadherence, and diligent drug monitoring is required during treatment. Standard lithium monitoring involves invasive blood collections and laboratory analysis with low time granularity. Recent advances in sensor technology have enabled the development of personalized drug‐monitoring devices that analyze biomarker information noninvasively. Herein, based on the fact that the analyte partition onto the fingertip with a high flux, a touch‐based noninvasive monitoring modality for managing lithium pharmacotherapy is devised. The system is built based on a thin organohydrogel‐mounted lithium ion‐selective electrode (TOH‐ISE). The TOH coating provides a stable environment for sensing. Through the utilization of a water/glycerol bi‐solvent matrix, the gel exhibits dehydration‐resist properties, rendering a controlled micro‐environment for ISE conditioning, and subsequently minimizing signal drift. To illustrate the clinical application of the solution, the system is tested on a subject prescribed lithium. The system successfully detected the increase in circulating drug levels following medication intake. Collectively, the results indicate the devised solution is capable to facilitate lithium adherence monitoring and has broader potential for optimizing lithium pharmacotherapy.

     
    more » « less